Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
EBioMedicine ; 69: 103439, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1275277

ABSTRACT

BACKGROUND: COVID-19 has been associated with Interstitial Lung Disease features. The immune transcriptomic overlap between Idiopathic Pulmonary Fibrosis (IPF) and COVID-19 has not been investigated. METHODS: we analyzed blood transcript levels of 50 genes known to predict IPF mortality in three COVID-19 and two IPF cohorts. The Scoring Algorithm of Molecular Subphenotypes (SAMS) was applied to distinguish high versus low-risk profiles in all cohorts. SAMS cutoffs derived from the COVID-19 Discovery cohort were used to predict intensive care unit (ICU) status, need for mechanical ventilation, and in-hospital mortality in the COVID-19 Validation cohort. A COVID-19 Single-cell RNA-sequencing cohort was used to identify the cellular sources of the 50-gene risk profiles. The same COVID-19 SAMS cutoffs were used to predict mortality in the IPF cohorts. FINDINGS: 50-gene risk profiles discriminated severe from mild COVID-19 in the Discovery cohort (P = 0·015) and predicted ICU admission, need for mechanical ventilation, and in-hospital mortality (AUC: 0·77, 0·75, and 0·74, respectively, P < 0·001) in the COVID-19 Validation cohort. In COVID-19, 50-gene expressing cells with a high-risk profile included monocytes, dendritic cells, and neutrophils, while low-risk profile-expressing cells included CD4+, CD8+ T lymphocytes, IgG producing plasmablasts, B cells, NK, and gamma/delta T cells. Same COVID-19 SAMS cutoffs were also predictive of mortality in the University of Chicago (HR:5·26, 95%CI:1·81-15·27, P = 0·0013) and Imperial College of London (HR:4·31, 95%CI:1·81-10·23, P = 0·0016) IPF cohorts. INTERPRETATION: 50-gene risk profiles in peripheral blood predict COVID-19 and IPF outcomes. The cellular sources of these gene expression changes suggest common innate and adaptive immune responses in both diseases. FUNDING: This work was supported in part by National Institute for Health Research Clinician Scientist Fellowship NIHR: CS-2013-13-017 (TMM); Action for Pulmonary Fibrosis Mike Bray fellowship (PLM); The National Heart, Lung, and Blood Institute (NHLBI) through award K01-HL-130704 (AJ); The University of South Florida (USF) Academic Support Fund and the USF Foundation, Ubben Fibrosis Fund (JHM).


Subject(s)
COVID-19/genetics , Transcriptome , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL